小马哥帮你解决支付痛点,走进大数据营销

admin
大数据营销能够很好的帮助商户开拓线下线上用户,个性化的用户画像,针对每一类数据实体,进一步分解可落地的数据维度,刻画TA的每一个特征,在聚集起来形成人群画像。
01用户画像用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。具体包含以下几个维度:用户固定特征:性别,年龄,地域,教育水平,生辰八字,职业,星座用户兴趣特征:兴趣爱好,使用APP,网站,浏览/收藏/评论内容,品牌偏好,产品偏好用户社会特征:生活习惯,婚恋,社交/信息渠道偏好,宗教信仰,家庭成分用户消费特征:收入状况,购买力水平,商品种类,购买渠道喜好,购买频次用户动态特征:当下时间,需求,正在前往的地方,周边的商户,周围人群,新闻事件如何生成用户精准画像大致分成三步。
1.采集和清理数据:用已知预测未知首先得掌握繁杂的数据源。包括用户数据、各式活动数据、电子邮件订阅数、线上或线下数据库及客户服务信息等。这个是累积数据库;这里面最基础的就是如何收集网站/APP用户行为数据。比如当你登陆某网站,其Cookie就一直驻留在浏览器中,当用户触及的动作,点击的位置,按钮,点赞,评论,粉丝,还有访问的路径,可以识别并记录他/她的所有浏览行为,然后持续分析浏览过的关键词和页面,分析出他的短期需求和长期兴趣。还可以通过分析朋友圈,获得非常清晰获得对方的工作,爱好,教育等方面,这比个人填写的表单,还要更全面和真实。我们用已知的数据寻找线索,不断挖掘素材,不但可以巩固老会员,也可以分析出未知的顾客与需求,进一步开发市场。
2.用户分群:分门别类贴标签描述分析是最基本的分析统计方法,描述统计分为两大部分:数据描述和指标统计。数据描述:用来对数据进行基本情况的刻画,包括数据总数,范围,数据来源。指标统计:把分布,对比,预测指标进行建模。这里常常是Data mining的一些数学模型,像响应率分析模型,客户倾向性模型,这类分群使用Lift图,用打分的方法告诉你哪一类客户有较高的接触和转化的价值。在分析阶段,数据会转换为影响指数,进而可以做"一对一"的精准营销。举个例子,一个80后客户喜欢在生鲜网站上早上10点下单买菜,晚上6点回家做饭,周末喜欢去附近吃日本料理,经过搜集与转换,就会产生一些标签,包括"80后""生鲜""做饭""日本料理"等等,贴在消费者身上。
3.制定策略:优化再调整有了用户画像之后,便能清楚了解需求,在实际操作上,能深度经营顾客关系,甚至找到扩散口碑的机会。例如上面例子中,若有生鲜的打折券,日本餐馆最新推荐,营销人员就会把适合产品的相关信息,精准推送这个消费者的手机中;针对不同产品发送推荐信息,同时也不断通过满意度调查,跟踪码确认等方式,掌握顾客各方面的行为与偏好。除了顾客分群之外,营销人员也在不同时间阶段观察成长率和成功率,前后期对照,确认整体经营策略与方向是否正确;若效果不佳,又该用什么策略应对。反复试错并调整模型,做到循环优化。这个阶段的目的是提炼价值,再根据客户需求精准营销,最后追踪客户反馈的信息,完成闭环优化。我们从数据整合导入开始,聚合数据,在进行数据的分析挖掘。数据分析和挖掘还是有一些区别。数据分析重点是观察数据,单纯的统计,看KPI的升降原因。而数据挖掘从细微和模型角度去研究数据,
小马哥智慧收银通过移动支付手段获取海量数据,并通过大数据分析技术实现消费者洞察,提供个性化服务,让门店实现数据采集,用户触达,营销内容的全链路升级。核心团队来自百度、阿里巴巴、支付宝、美团等顶级互联网公司平均每月超过120项技术更新。通过大数据分析剞劂营销问题。
1.消费大数据分析:分析消费频率,金额主动提高价值客户
2.客流大数据分析:随时随地监控大数据综合分析客流趋势
3.行为大数据分析:提高用户基本信息,分类营销,满足个性需求。
4.LBS大数据分析:根据用户所处的商圈、地标等位置推荐服务。
实时判断用户的线上支付能力,帮助商家引导客户进行线上支付,从而降低结算费和退货率、加快资金归集。
根据LBS信息,为商户在线下准确定位到目标用户群体,进行店铺选址,活动推广等商业决策。商户获取心的关注用户,商户通过支付宝获知用户的基础属性,根据用户的属性进行推送相应的商品或信息。小马哥帮你解决支付痛点,走进大数据营销